Blog home

welcome to my blog

this is some math content xR,yZ s.t. idk\forall x \in R, \exists y \in Z \text{ s.t. idk}

Let m,nm,n be coprime positive integers. Show that φ(nm)=φ(n)φ(m)\varphi(nm)=\varphi(n)\varphi(m). Use this and parts (a), (b) to find a formula for φ(n)\varphi(n) for an arbitrary n2n\geq 2.

name of whatever

A and T factors

Compute the integral: xcosxdx\displaystyle\int x\cos x\,dx

Solution

(1) Choose u=xu=x.

Set u(x)=xu(x)=x because xx simplifies when differentiated. (By the trick: xx is Algebraic, i.e. more “uu”, and cosx\cos x is Trig, more “vv”.)

Remaining factor must be vv':

v(x)=cosxv'(x)=\cos x

(2) Compute uu' and vv.

Derive uu:

u=1u'=1

Antiderive vv':

v=sinxv=\sin x

Obtain chart:

u=xv=cosxu=1v=sinxuvoriginaluvfinal\begin{array}{c|c}u=x&v'=\cos x\\\hline u'=1&v=\sin x\end{array} \begin{array}{l}\quad\longrightarrow\quad\int u\cdot v'\qquad\text{original} \\ \quad\longrightarrow\quad\int u'\cdot v\qquad\text{final} \end{array}

(3) Plug into IBP formula.

Plug in all data:

xcosxdx=xsinx1sinxdx\int x\cos x\,dx=x\sin x-\int 1\cdot\sin x\,dx

Compute integral on RHS:

xcosxdx=xsinx+cosx+C\int x\cos x\,dx = x\sin x+\cos x+C

Note: the point of IBP is that this integral is easier than the first one!


(4) Final answer is:   xsinx+cosx+C\;x\sin x+\cos x + C

How to scale a database